011 Grigor Barsegian
011 Grigor Barsegian
Grigor Barsegian (National Academy of Sciences of Armenia)
//
A new property of arbitrary complex polynomials
//
For simplicity we consider an arbitrary complex monic polynomial, i.e. $P(z)=z^{m}+b_{1}z^{m-1}...+b_{m}$.
Denote by $Z(a)$ the set $z_{i}(a)$ of $a$-points of $P(z)$, i.e. points $
z_{i}(a)$, $=1,2,...m$, where $P(z_{i}(a))=a$.\medskip
\noindent \textbf{Theorem 1}. \textit{For an arbitrary monic polynomial }$
P(z)$\textit{\ and an arbitrary different }$a_{1},a_{2},a_{3}\in \mathbb{C}$
\textit{\ there is a point }$z^{\ast }\in Z(a_{1})\cup Z(a_{2})\cup Z(a_{3})$
\textit{\ such that}
\begin{equation}
|P^{\prime }(z^{\ast })|>C^{\ast }\sqrt{m}, \tag{1}
\end{equation}%
\textit{where }$C^{\ast }$\textit{\ is a constant depending only on }$
a_{1},a_{2},a_{3}$.\medskip
\noindent \textbf{Sharpness}. The inequality (1) is sharp up to the constant.
Rod Halburd | |
77 | |
9/17/2020 | |
01:06:40 | |
CAvid, Complex Analysis |