108 Vladimir Kostov
108 Vladimir Kostov
Vladimir Kostov (Université Côte d'Azur, France) //
Analytic properties of the partial theta function
//
Abstract:
We consider the partial theta function $\theta(q,x):=\sum_{j=0}^{\infty}q^{j(j+1)/2}x^j$, where $x$ is a variable and $q$ a parameter ($|q|<1$). We deal with the two possible situations, when $q$ is real or complex. In the talk we focus on the analytic properties of $\theta$, such as
asymptotic expansions for its zeros, its spectrum (i. e. the set of values of the parameter $q$ for which $\theta (q,.)$ has multiple zeros), behaviour of its zeros, especially of its complex conjugate
pairs, when the parameter $q$ varies, separation in modulus of the zeros etc.
Rod Halburd | |
34 | |
5/9/2023 | |
01:00:54 | |
CAvid, Complex Analysis |